

De-Icing for More Efficient Renewable Energy

Madeleine Carr, Abby Hughes, Thea Kunzle, Justin Sapun

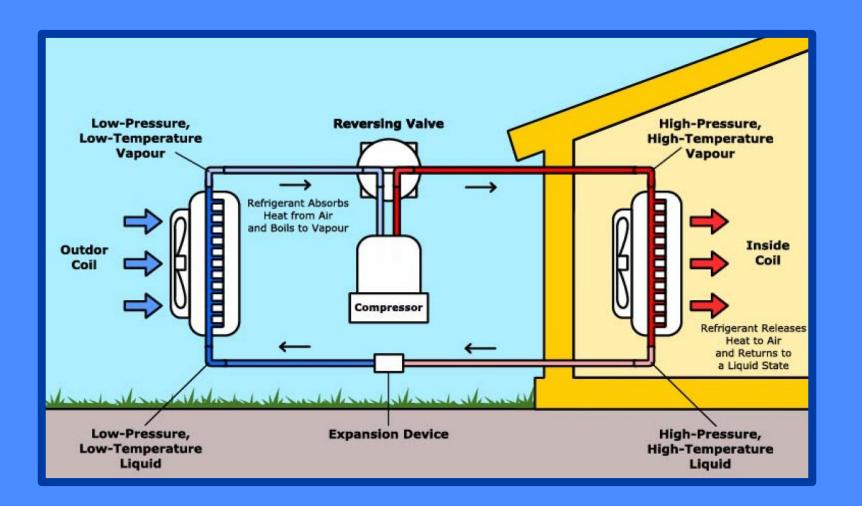
Team 06-709 - ENGS 90 - 25W

Team Roles

Madeleine CarrProject Manager
Treasurer

Abby Hughes
Advising Team POC
Control Testing
Lead

Thea Kunzle Electrical Lead



Justin SapunControls Lead
Mechanical Lead

Table of Contents

Methodology Approach:
Control Testing Methodology Approach: **Prototype Testing** Societal Impacts and Economic Conclusions and Future Work Analysis

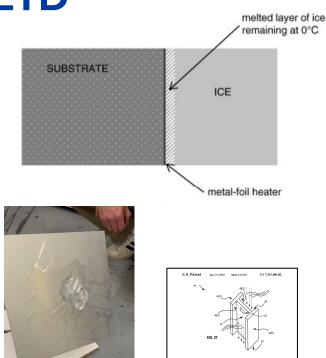
01 Overview

To promote wider adoption of cold climate air-source heat pumps, we integrated high-power pulse technology to enhance the overall efficiency of ASHPs.

Pulse Electric Thermo Deicing (PETD)

An array of patented methods that use **high-power electric pulses** to **remove** ice, **prevent** ice formation, and either increase or decrease **ice-surface friction**.

Patent Inventors

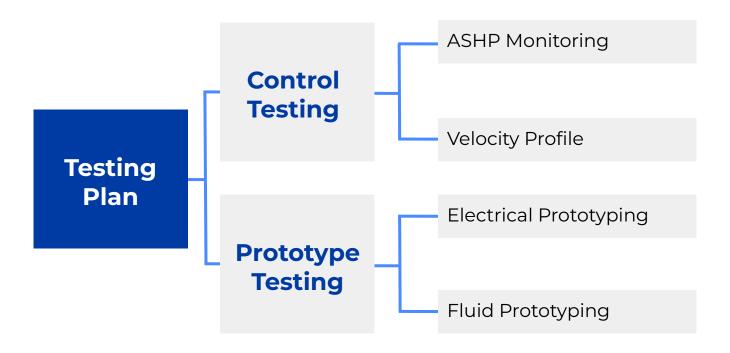

- Victor F. Petrenko: Dartmouth Engineering Professor
- Fedor V. Petrenko: Developed analytics for Dartmouth's Energy Initiative
- Cheng Chen: Dartmouth Alum, Former Ice Lab Researcher
- John Chen (Owner): Project Advisor, Former Ice Lab Researcher

Ice Theory and PETD

Ice's stickiness is due to its charged surface, which induces an opposite charge on the surface it adheres to.

PETD melts the interfacial ice layer, creating a thin film of water, and causing the ice to fall with the help of gravity.

Many applications: Deicing airplanes, power lines, windshields, ships, cars, trucks, offshore wind structures, roads, bridges, ski lifts, roofs, freezers, and more.


Specifications	Justification	Quantification
Efficient	Current market leading cold weather ASHPs are inefficient at below freezing temperatures	Coefficient of Performance (CoP) and energy (kW) of defrost cycle
Safe	Exposure to elements, animals, and homeowners	Acceptably low exposed voltage, isolated high voltage
Durable	Replacements are costly, and areas may have limited access to maintenance and repair	Thermal, environmental and corrosion testing
Affordable	Encourage homeowners in cold climates to install new ASHPs	Production and installation cost estimation
Legal	Compliance with electrical and refrigerant laws	Local Laws and EPA Regulations
Quiet	Comfortable audible sound level	Decibels (Db) and Location

Sponsor Goals

Our sponsor's long term goal is to develop the integration of ASHP and PETD technology for widespread, global adoption.

His vision for our group is to make that possible through a **prototype** iteration, experimental procedure, data collection, and analysis.

Testing Approach

02 Methodology Approach: **Control Testing**

ASHP Installation

Indoor Unit

Mitsubishi Hyper Heat Model ASUG09LZBS

Outdoor Unit

Mitsubishi Hyper Heat Model AOUG09LZAH1

(Thank you Dave, John, and Raina!)

Data Collection

Sensor	Desired Parameter
Impeller Anemometer (2x)	Inlet and Outlet Airflow on Outdoor and Indoor Units
Exposed Thermistor (4x)	Direct Inlet and Outlet Temperature on Indoor and Outdoor Units Indoor and Outdoor Ambient Temperature (75 cm away)
Relative Humidity Sensor (1x)	Humidity at the outdoor unit inlet
Eyedro Home Energy Monitor	Monitors the kW that the ASHP pulls

Outdoor Unit (ODU)

Outlet Temperature on Outdoor Condenser Fins

LabQuest 2 in Insulating Sleeve

Ambient Temperature (75 cm from Inlet)

Indoor Unit (AHU)

Ambient temperature (75 cm from outlet)

Outlet airflow and temperature

Using a single point flow from the impeller anemometer is sufficient and accurate because we can account for the **velocity profile**

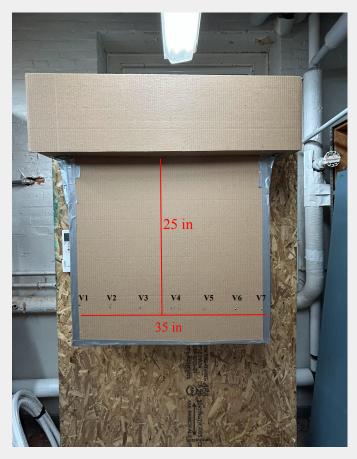
Velocity Profile

Velocity Profile Justification

- Recommendations from advising team
 - Alexa Freitas (Trane Technologies)
 - Cheng Chen (Thayer Ice Lab Researcher)
 - Raina White (Thayer Systems and Fluids)
- 1. Achieve uniform flow across outlet
- 2. Calculate velocity profile
- 3. Calculate CFM
- 4. Calculate COP

 $CoP = \frac{Q_{out}}{Q_{in}} = \frac{CFM \cdot \Delta T \cdot 1.08}{(kWh_{ODU} + kWh_{AHU}) \cdot 3413}$

Anemomaster 6036 Professional HVAC Anemometer (Thank you Raina!)



1. Build Ductwork for Velocity Profile

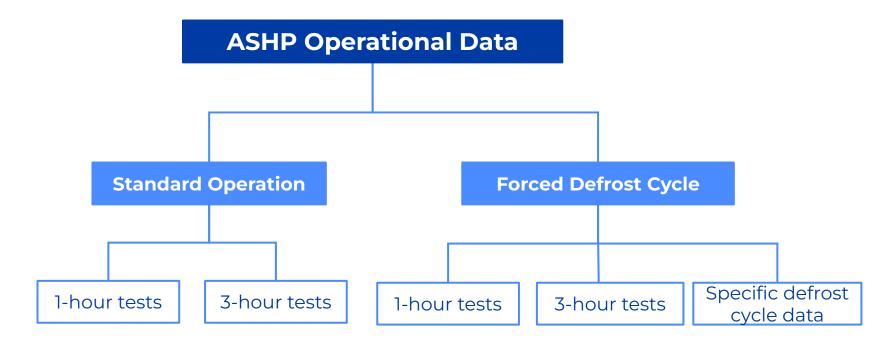
2. Calculate Velocity Profile

V1 = 0.15 m/s V2 = 0.16 m/s V3 = 0.18 m/s V4 = 0.16 m/s V5 = 0.17 m/s V6 = 0.18 m/s V7 = 0.15 m/s

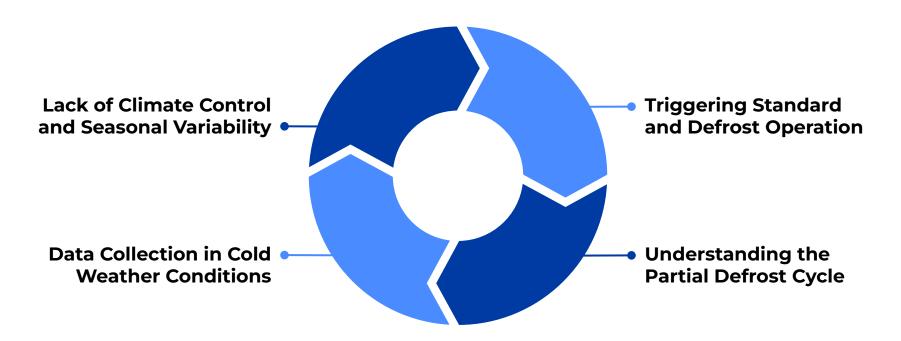
 $V_{avg} = 0.1614 \text{ m/s}$

3. Calculate CFM

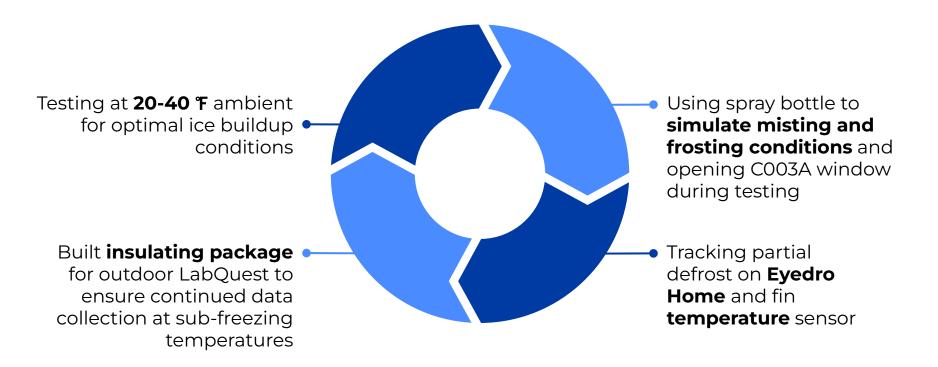
Ductwork Volume =
$$30 \times 37 \times 11 = 11210 \text{ in}^3 = 7.07 \text{ ft}^3$$


CFM (cubic feet per minute) = 224.61

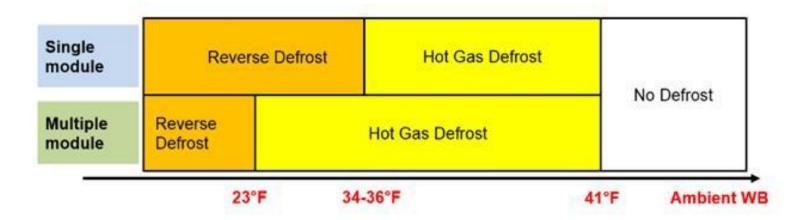
Higher CFM generally means better performance and versatility


4. Calculate COP

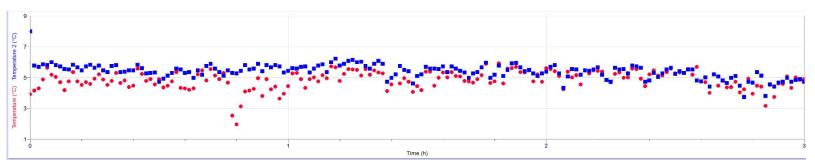
ASHPMonitoring

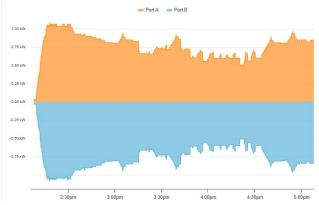

Goal: Gather Data on ASHP Operations

Challenges Faced



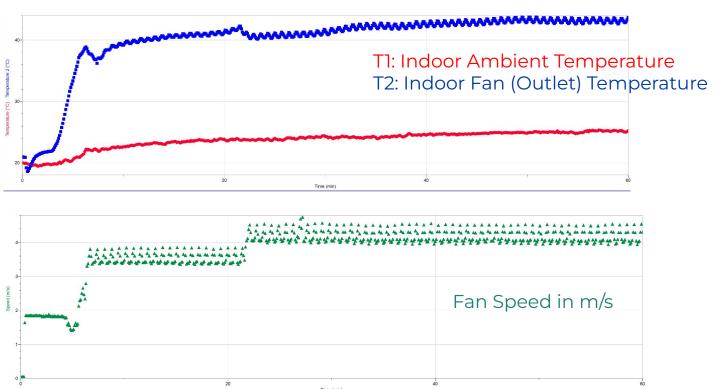
Solutions


Full and Partial Defrost


- Full: **100%** of hot gas directed to ODU to defrost condenser fins
- Partial: ~50% of hot gas directed to ODU, ~50% used to heat AHU

Standard Operation Data

Outdoor Unit (3-Hour Test)



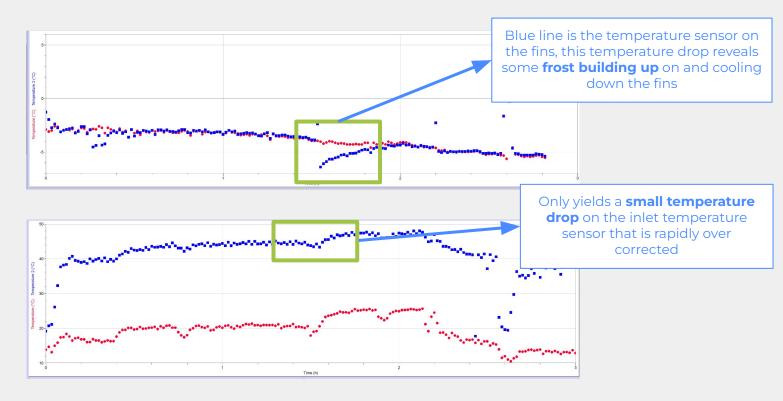
T1: Outdoor Fin (inlet) Temperature
T2: Outdoor Ambient Temperature

Port 1: Power Usage in kW Port 2: Power Usage in kW

Standard Operation Data

Indoor Unit (3-Hour Test)

Forced Defrost Cycles


Full Defrost Cycle

Time: 9:05:04 mins

Power Consumption: ~4.68 kW

Partial Defrost Cycle

Only took ~4:40 mins and used ~2 kW power

03 Methodology Approach: **Prototype Testing**

Parallel Design

Power Supply

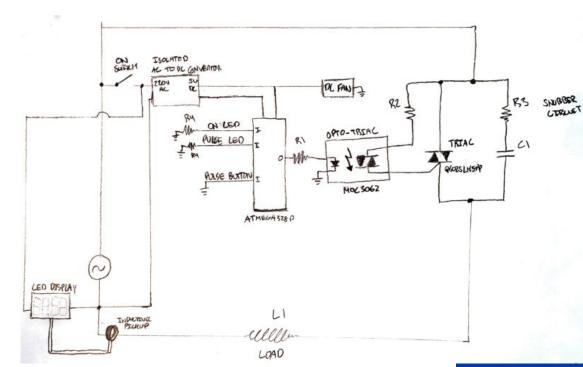
- Need ability to safely control 120/220V AC input to the coil
- Learn high power electronics

Icing Methods

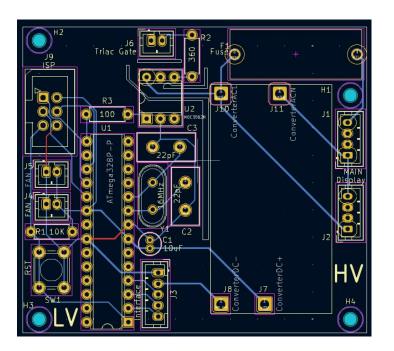
Need method of cooling coil so that it would freeze water vapor in the air

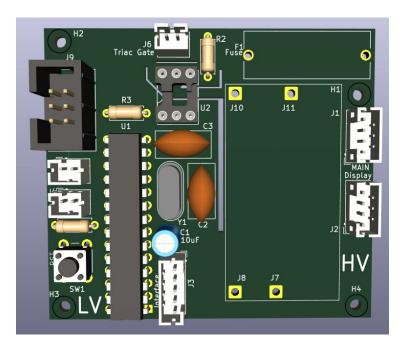
PETD Implementation

- Shifting focus to smaller scale testing
 - Transformer specifications
- Increasing power capability


Power Supply

Power Supply - Schematic


Basic Idea: Create a control system that toggles AC input


Design: Use a microcontroller (atmega328p) to operate an optocoupler (transfers electrical signals between isolated circuits) which will drive a triac (semiconductor switch). The output of the triac will go straight to the load, and allow for steady dI/dt.

Safety: Certified isolated AC to DC converter, optocoupler, isolated LV and HV, 2A fuse, heatsink, waterproof housing

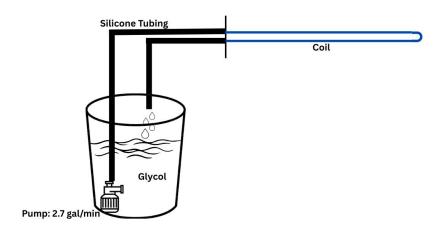
Power Supply - PCB

^{*} This design follows IPC clearance and creepage guidelines for 240 AC mains.

Power Supply - Housing

Custom Design

Assembly


Power Supply - Isolated Variac

- Proven electrical isolation from mains supply to coil
- Manual switch safety
- Simple voltage adjustments

Icing Methods

Icing Methods - Fluid Loop

Icing Methods - Fluid Loop Testing

Conducted a preliminary test to verify the possibility of freezing water vapor using this method. Ambient temperature was 30F.

Test #1: Antifreeze, ice, salt, coil, tubing, hose clamps, pump, and a misting bottle

The coil itself was cold to the touch, but no ice was forming

Test #2: Added a box fan to the setup

Results! Water droplets began freezing

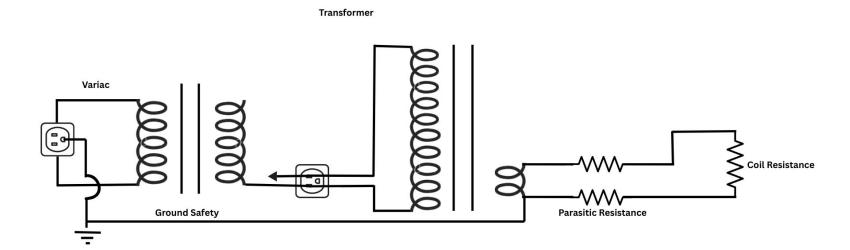
Test #3: Placed snow on coil

Snow remained in position

Icing Methods - Fluid Loop Testing

Icing Methods - Fan Tunnel

After our initial fluid loop test, we wanted to focus the airflow onto the coil to further **improve our icing capabilities**


PETD Integration

Transformer Characterization

- Measuring inductance, resistance, real voltage transfer
 - Done with Bob Barry and Professor Sullivan
- Safety: electrical isolation not fully trusted
- Also concluded which leads to use

Electrical Design

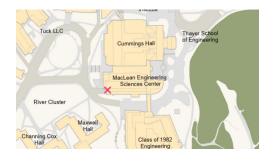
Design Iterations

Cables + Solder

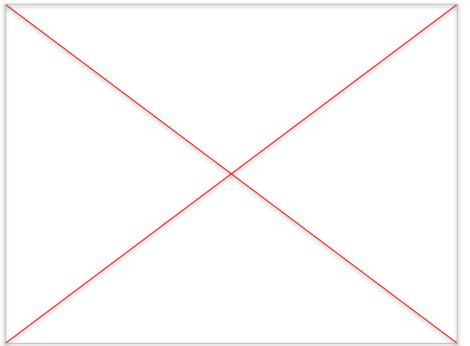
- Soldered 6 stranded 12 gauge wire to pipe
- Mechanically connected wires to transformer
- Limited to 120 A

Cables + Bronze Busbars

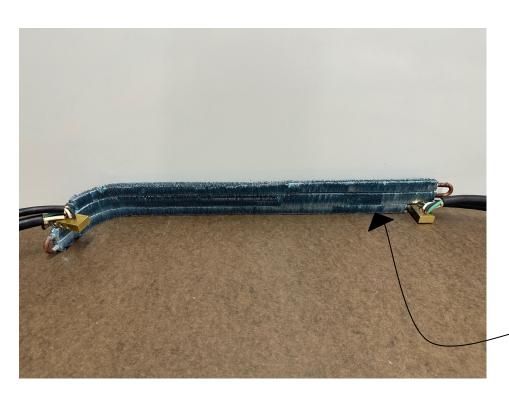
- Mechanically screwed wire to busbars
- Mechanically connected and soldered busbars to pipe
- Mechanically connected wires to transformer
- Limited to 150 A



Copper Busbars


- Mechanically connected and soldered busbars to pipe
- Mechanically bolted busbars to transformer
- High current capability

Full Test Setup

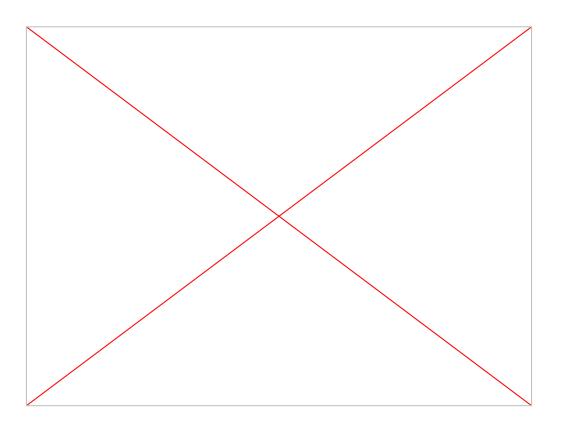


1 Length

Custom built stand with 3 printed holders

3 Lengths

Cuts made in between pipes led to uneven deicing


6 Lengths

One complete coil ensures uniform deicing

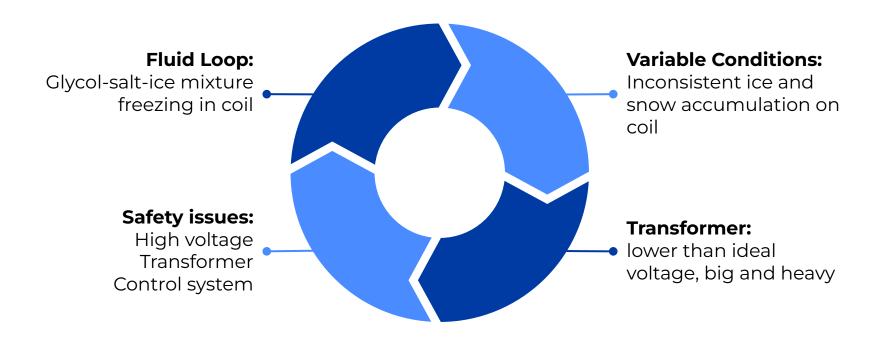
* LV prevents current from traveling through aluminum fins

Demo

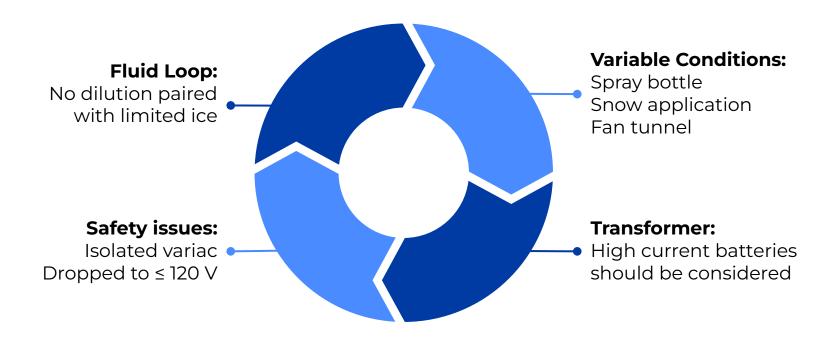
Testing Results

1 Length	3 Lengths	6 Lengths				
64.8 W → 3.6 kW	~350 W → 6.5 kW	~730 W → 6.8 kW				
6 minutes	4:54 minutes	2:28 minutes				
363 Wh	535 Wh	283 Wh				

Takeaways


0.432 kWh

Average Total Power Consumption (extrapolated) 0.342 kWh


Average Power Consumption Under Favorable Conditions (extrapolated) 0.613 kWh

Average Power
Consumption Under
Unfavorable Conditions
(extrapolated)

Challenges Faced

Solutions

04 Deliverables: Results

CoP Calculation

Coefficient of Performance (CoP) quantifies efficiency of transfer of electricity input into heating or cooling output as an **instantaneous measurement**

$$CoP = \frac{Q_{out}}{Q_{in}} = \frac{CFM \cdot \Delta T \cdot 1.08}{(kWh_{ODU} + kWh_{AHU}) \cdot 3413}$$

$$CoP_{HP} = \frac{Q_H}{W_{in}}$$

CoP Calculations (Defrost Specific)

$$CoP = \frac{Q_{out}}{Q_{in}} = \frac{CFM \cdot \Delta T \cdot 1.08}{(kWh_{ODU} + kWh_{AHU}) \cdot 3413}$$

CFM = 224.61
$$\Delta T = 24 \,^{\circ}F$$

$$kWh_{combined} = .702$$

$$CoP = \frac{224.61 \cdot 24 \cdot 1.08}{.702 \cdot 3413}$$

$$CoP = 2.43$$

CoP Comparisons

CoP Defrost

CFM = 224.61

$$\Delta$$
T = 24 °F
kWh_{combined} = 0.702 kWh

$$CoP = \frac{224.61 \cdot 24 \cdot 1.08}{.702 \cdot 3413}$$

$$CoP = 2.43$$

CoP Standard

CFM = 224.61

$$\Delta T = 24 \,^{\circ}F$$

kWh_{combined} = 0.150 kWh

$$\mathsf{CoP} = \frac{224.61 \cdot 24 \cdot 1.08}{.150 \cdot 3413}$$

$$CoP = 11.37$$

Final Comparison

ASHP Defrost

4.68 kW · 0.150833 hr = **0.702 kWh**

Prototype

6.37 kW · 0.07 hr = **0.432 kWh**

05 Societal Impacts and **Economic Analysis**

Societal Impact

1 Political

2 Environmental

3 Economical

Advanced, high-efficiency ASHPs designed for cold climates have the potential to influence policymakers to enact more supportive regulations and incentives for renewable energy adoption.

Implemented safety measures to eliminate the risk of electrocution to local wildlife and prevent refrigerant leaks, safeguarding soil integrity and protecting plant life ASHPs designed for greater efficiency in cold climates deliver substantial long-term economic advantages, such as sustained energy savings, reduced operational costs, and a stronger return on investment over their lifespan

Economic Analysis

Components	Cost		Ratings
Breaker	\$85.00	/unit	300 A 48 V
Relay	\$20.00	/unit	200 A 24 V
Transformer	\$100.00	/unit	24 V 200 A
Controller	\$15.00	/unit	
Wiring	\$5.00	/unit	
Expenses	Cost		
Additional Labor	\$15.00	/hour	
	\$45.00	/unit	
Revenue	Amount		
Additional price	\$500.00	/unit	
Added revenue	\$230.00	/unit	

Market Adoption

Our sponsor's goal is to have convincing data to pitch to **HVAC manufacturers**.

Our project did not provide entirely conclusive results, however it justifies further data collection.

If results are more certain, this product could save energy on a global scale.

06 Conclusions and Future Work

Conclusions

- Proved significant drop in CoP during defrost cycle
 - Added potential **novel contribution** to literature on defrost cycle
- PETD uses less energy than classical defrost cycle
 - Difference is **not as substantial** as hoped
 - May not be worth the cost
- Variable conditions and inconsistent data for both control and prototype testing contribute to higher uncertainty
 - Better controlled lab needed to do full cost benefit analysis

Next Steps

Further prototype testing

Re-evaluate power supply

Improve rigor of defrost cycle testing

- Scale up to a full size system
- Weigh coil, frost, collected frost
- Vibration to remove water

- Consider using 30V
- Still safe
- Less current requirement
- Smaller, lighter

- Use Ice Lab facility
- Control temperature, humidity, etc.
- Repeatable conditions
- HVAC/Ice Lab Researchers

Special Thanks

Bob Barry

Cheng Chen

John Chen

Danny DeNauw

Sol Diamond

Alexa Freitas

Chris Magoon

Dave McDevitt

Emily Monroe

John Stark

Jason Stauth

Charlie Sullivan

Raina White

Thank You

Questions?

Appendix

Transformer Data

Inductance Secondary (mH) (Sullivan)	Inductance Secondary (mH) (Bob)	Primary Wires	Inductance Primary (mH) (Sullivan)	Inductance Primary (mH) (Bob)	DC Resistance Primary (Ohm) (Bob)	Turns Ratio (Sullivan)	Turns Ratio (Bob)	Turns Ratio (avg)	Vout Predicted (10V, 60 Hz, input)	Vout Real (10V, 60 Hz input)	Vout Real (10V, 100 kHz input)	Ratio (real/expected)
0.046	0.047	1->2	28	30.5	0.12	0.04053217417	0.03925536405	0.03989376911	0.3989376911	0.206		0.5163713648
		1->3		40.1			0.03423550533	0.03423550533	0.3423550533	0.197		0.5754260032
		1->4		50.68			0.0304530381	0.0304530381	0.304530381	0.187		0.6140602438
		1->5		61.04			0.02774863769	0.02774863769	0.2774863769	0.177		0.6378691522
		1->6		75			0.02503331114	0.02503331114	0.2503331114	0.166	0.195	0.6631164334
		2->3	0.429	0.43	0.02	0.3274539773	0.3306090222	0.3290314997	3.290314997	0.0453		0.01376767879
		2->4		1.754			0.1636945176	0.1636945176	1.636945176	0.134		0.0818597971
		2->5		3.731			0.1122370658	0.1122370658	1.122370658	0.2		0.178194252
		2->6								0.244		
		3->4	0.429	0.43	0.02	0.3274539773	0.3306090222	0.3290314997	3.290314997	0.0455		0.01382846324
		3->5		1.57			0.1730211135	0.1730211135	1.730211135	0.124		0.0716675540
		3->6								0.206		
		4->5	0.33	0.34	0.01	0.3733549777	0.3718000728	0.3725775253	3.725775253	0.0375		0.01006501935
		4->6								0.134		
		5->6	0.529	0.535	0.03	0.2948839123	0.296395795	0.2956398537	2.956398537	0.055		0.01860371642

Prototype Data

	Voltage (V)	Amperage (A)	Power Test (W)	Avg Power (W)	Power Total (W)	Time (minutes)	Avg Time (mins)	Energy (kJ)	Energy (kWh)	Avg Energy (kWh)	Temp Coil Start (°F)	Temp Coil End (°F)
1 length	0.4	162	64.8	64.8	3628.8	6	6	1306.368	0.36288	0.36288	NA	NA
3 lengths	1.57	205	321.85	354.554	6007.866667	4.75	4.9	1712.242	0.4756227778	0.5352898444	28.5	NA
	1.6	206	329.6		6152.533333	6.25		2307.2	0.6408888889		28.2	100
	1.71	227	388.17		7245.84	3		1304.2512	0.362292		23	145
	1.71	215	367.65		6862.8	5.5		2264.724	0.62909		24.8	145
	1.7	215	365.5		6822.666667	5		2046.8	0.568555556		23.8	185
6 lengths	3.41	220	750.2	736.6833333	7001.866667	2	2.4721	840.224	0.2333955556	0.2828640995	33	91
	3.4	215	731		6822.666667	3.333		1364.39688	0.3789991333		33	115
	3.39	215	728.85		6802.6	2.0833		850.3113948	0.2361976097		33	110
Averages					6371.96	4.212922222		1555.168608	0.4319912801			
Good Conditions	ıs				6251.606667	3.527716667		1229.632246	0.3415645127			
Bad Conditions					6612.666667	5.583333333		2206.241333	0.6128448148			

Major Setbacks

Fluid Loop

- Freezing
- Fluid velocity
- Glycol mixture

Safety

- High voltage
- Time intensive prototyping
- Control system

Transformer

- Lower than ideal voltage
- Big and heavy

Intro - 2 Control - 5 Prototype - 5.5 Combined - 1 Ending - 1

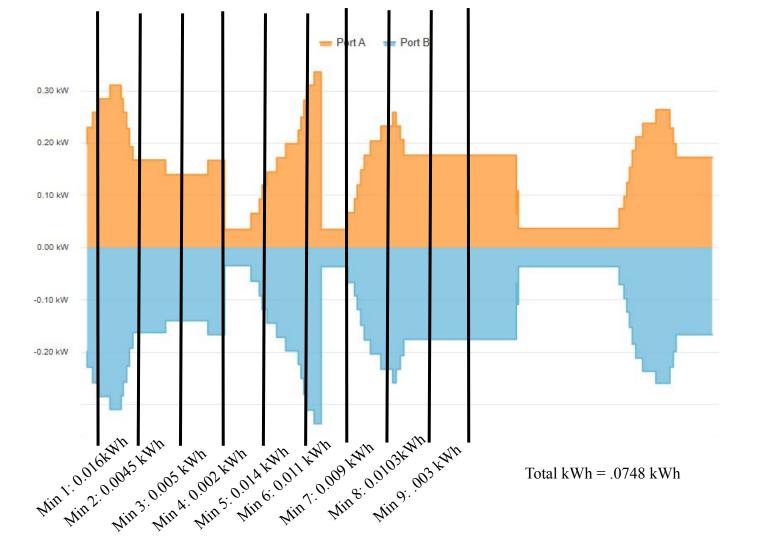
Electrical Design

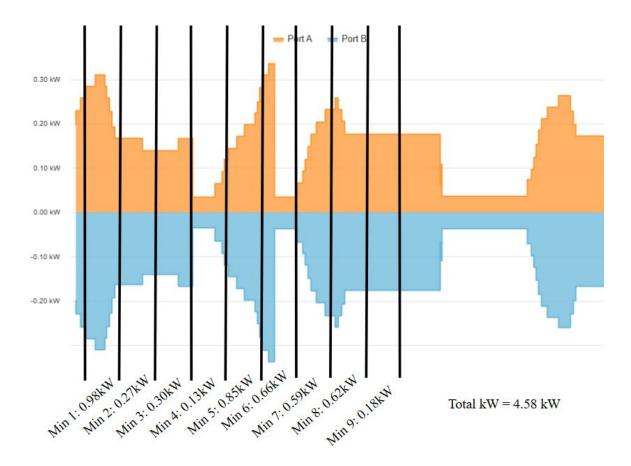
Cables + Solder

Limited to 120 A

Simplest to fabricate, but time intensive

Cables + Busbars


Limited to 150 A


Easiest to assemble for testing

Busbars

Very high current

Hardest to transport

